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Summary

ECCW is a python library and a GUI of this library. The ECCW python
library allows to compute the exact solution of critical Coulomb wedge, draw it,
sketch it, with love. Are available compressive or extensive geological context,
with or without fluid pore pressure.
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1 Usage

main.py [-h] [-V] [-d] [-f FILE]
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2 Understand ECCW

2.1 The critical coulomb wedge theory.

Super-criticale)Criticald)Sub-criticalc)

?

a)

βBasal slope

Topographic slope Décollement
+

-

β

αα
b)

α = αc α > αcα < αc

+

-

Figure 1

2.2 Criticality.

The critical enveloppe defines three domains of stability (see figure 4):

• Super-critical

• Sub-critical

• Critical

In the super-critial doamin, outside the enveloppes, no internal deformation occurs. The
prism only slides on the basal décollement (figure 3). In the sub-critical domain, including
the enveloppes, some internal deformations occurs. This deformation will appears along
the pushing back-wall in the sub-critical domain (figure 2), while it can occurs anywhere
inside the prism at the exact critical state.

2.3 Motor of faulting

Mathematically constituted of four parts due to the two arcsin included in the impicite
solution (see section 3), the critical enveloppe is meaningfull by group of two. In all plots
of this documentation, the enveloppe is drawed in two parts, highlited by the red and blue
lines. The red line represent configurations where the faults are in reverse mode, while the
configurations under the blue line are in normal mode (see Figure ?? and 1).

The ”motor” of normal or reverse faulting is in all cases tectonic motion or gravitational
collapse. According to the geological context, these ”motors” are seted differently. For
compressive context, reverse faulting (bottom red line) is driven by tectonic motion while
normal faulting is due to gravitational collapse (Figure ??). For extensive context this
normal faulting (upper blue line) which is driven by tectonic motion and reverse faulting
by gravitational collapse (Figure 1).
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Figure 2: Sandbox experiment showing deformation occuring in a prism initally at sub-critical
state (a). Deformation is propagating from the back-wall to the front (b to d). After
Souloumiac Thesis, 2009.

a)

b)

Figure 3: Sandbox experiment showing no deformation occuring (b) in a prism initally at super-
critical state (a). After Souloumiac Thesis, 2009.
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Figure 4: The domains of stability defined by the critical enveloppes : deformation occurs in the
prism if it lays in the sub-critical domain (gray surface), including the critical enveloppes
(red and blue lines). No deformation occurs in the super-critical domain : the tectonic
force is accomodated only by sliding on the basal décollement.

3 Compute ECCW

3.1 Critical prism theory

From Dahlen [1984] and Yuan et al. [2015] we get a relation between the basal slope β and
the topographic slope α of a frictional material pushed by an horizontal tectonic force.

3.2 The exact implicit solution

From [Yuan et al., 2015], we get :

αc + β = ΨD − Ψ0 (1)
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3.3 Fault slopes at criticality
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max(αc) = −min(αc) = arctan
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Figure 5: The four mathematic domains of the critical enveloppes.

3.4 Solve ECCW

An iterative method is necessary to solve ECCW. Here we had choose Newton’s secant
method. But some issues raise when one try to solve (1) directly due to the two arcsin
included in (2) and (3). We choose here to rewrite equations (1), (2) and (3) into a set of
three functions that should equals zero :

f1 = αc + β − ΨD + Ψ0 (11)

f2 = sin(2ΨD + φD) − (1 − λD) sin(φD)

(1 − λB) sin(φB)
− λD − λB

1 − λB
sin(φD) cos(2Ψ0) (12)

f3 = sin(2Ψ0 + α′c) sin(φB) − sin(α′c) (13)

This set of equation can be used in an adapted form of the Newton’s Method.

3.5 Newton’s method

We use the Newton’s secant method to iteratively converge towards the solution.
The iteration :

∆x =
f(xi)

f ′(xi)
(14)

with ∆x = xi+1 − xi and f ′ the derivative of f . Iterates until ∆x < ε, an arbitrary small
threeshold. Initial value x0 is given by user.
The derivative f ′ can be approximated using finite difference:

f ′(xi) =
f(xi) − f(xi−1)

xi − xi−1
(15)

or

f ′(xi) =
f(xi + h) − f(xi)

h
(16)

with h a an arbitrary small value.
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3.6 Adaptation of Newton’s method to a set of functions

Let’s define F , a set of n functions :

F =

f1(X)
...

fn(X)

 (17)

with X = x1, . . . , xn, n parameters. The derivative of each subfunction fk is the sum of
the partial derivative on X. It is convenient for what follows to define M , a n× n matrix,
constituted of partial derivative on X for columns, with lines dedicated to subfunctions :

M =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn

 (18)

Each elements of M can be approximated using (15) or (16). For example, using (16) on a
set of 3 equations function of X = (x, y, z), M(Xi) is given by

f1(xi+h,yi,zi)−f1(Xi)

h

f1(xi,yi+h,zi)−f1(Xi)

h

f1(xi,yi,zi+h)−f1(Xi)

h
f2(xi+h,yi,zi)−f2(Xi)

h

f2(xi,yi+h,zi)−f2(Xi)

h

f2(xi,yi,zi+h)−f2(Xi)

h
f3(xi+h,yi,zi)−f3(Xi)

h

f3(xi,yi+h,zi)−f3(Xi)

h

f3(xi,yi,zi+h)−f3(Xi)

h

 (19)

Using (17) and (18), we can now rewrite (14) :

M · ∆X = −F (20)

∆X = M−1 · −F (21)

This last rewriting allows to solve 11, 12 and 13 by iteration, using X = (β,Ψ0,ΨD).
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