
Version history (PyOTE description is at end)

version 3.6.8
• adds modeling of off centerline observations to lightcurve calibration curve

generation

version 3.6.7
• clarified the location of the Enable Manual Timestamp Entry checkbox in the

pop-up message appears when there are no timestamps in the csv file.

version 3.6.6
• modified the lightcurve demo to show more clearly the camera exposure

function and the star intensity function that are convolved with the diffraction
lightcurve to produce the lightcurve as seen by the camera.

The right-click help connected to the Demo button has been expanded to
include a discussion of the convolution operation and hopefully provide some
context to aid in understanding the star and camera function plots.

version 3.6.5
• added advisory message when False Positive probability plot appears in hopes

of stemming in-discriminant use of this number as a 'decider' between a 'miss'
and a 'positive' for an observation.

version 3.6.4
• version 3.6.2 would open .xlsx Report file on Mac, but not Windows. This

version attempts to fix that (Windows needs a different command to open a file).

version 3.6.2
• In Excel report:

… at end of filling, I call the OS to open the file. Requires correct association
of .xlsx file type with Excel or LibreOffice, or whatever you use to examine
spreadsheets

… now writing numbers into numeric cells rather than text. This allows the cell
formatting to control rounding, etc

… if I can't write to the selected file, I ask whether you might have it open
somewhere else already

version 3.6.1
• reduced number of digits in the error bar numbers to 2 written to the Asteroid

Occultation Report Form so that the resulting number fits within the allotted cell
size. (I'm told that Occult only uses 2 digits anyway.) I also updated the context
help associated with the … fill Excel report button

version 3.6.0

• provides the ability to fill entries in the Excel spreadsheet Asteroid Occultation
Report Form from PyOTE results, thus eliminating transcription errors.

A button to allow the user to activate this 'fill' has been added just to the right of

the … write report button

NOTE: the normal .xls report form that OccultWatcher creates and prefills (when
requested) during your report to OccultWatcher ...

… MUST BE CONVERTED to .xlsx for use by PyOTE!

… For Windows users, Excel will read an .xls file and save it as .xlsx
… For Mac/Linux users, LibreOffice will read an .xls file and save it as .xlsx

Sorry about this extra step, but it was necessary. The downstream tools used by
area coordinators work equally well with the .xls and .xlsx forms of the
spreadsheet, so there is no problem sending in the .xlsx version.

What gets filled in for you is:

...D/R uncorrected times

...D/R error bars

...SNR
…OTA used
...nominal magDrop (entered in Comments cell of the spreadsheet).

NOTE: you must still open the spreadsheet and enter the exposure setting used
for your camera; it was not possible to do this from PyOTE.

After filling in the exposure setting in the spreadsheet, double check the form but
it is likely that it is ready for submission.

version 3.5.9
• fixed another bug in penumbral curve fit and removed diagnostic printouts.

version 3.5.8
• fixed a number of bugs in the penumbral curve fit code

version 3.5.7
• automatically turns off the display of the normalizing lightcurve when a

normalization is performed. It was a source of confusion to leave the normalizing
lightcurve visible because it was sometimes the case that the normalization
appeared not to have occurred (when the normalization effect was

subtle/minor).

version 3.5.6
• fixed a bug that kept a user from selecting a new file to read if PyOTE had been

started from PyMovie. Previously, it had only reopened the same file instead of
giving the user a file select dialog to choose from.

version 3.5.5
• fixed a bug that kept occultations from being extracted from lightcurves 5 and

up. The lightcurves above 4 could be viewed --- they just couldn't be processed
through the event finder because they were a different type (coding error)

version 3.5.4
• made the 'get newest version' code identical to that in PyMovie in hopes that

that will resolve the issue that some people experience with pip (or python)
installing downloaded pyote in a directory where it subsequently cannot be
discovered. The change is minute, so I'm not optimistic, but it's worth a shot.

version 3.5.3
• removed the blank lines between header lines extracted from the csv file and

placed in the log file --- this makes it easier to look at the newly added aperture
settings (so just a tiny cosmetic change).

version 3.5.2
• Changed the 'smooth reference star procedure' to no longer display the points at

the left and right ends; such points are actually extrapolated points with all the
hazards that extrapolation can engender. Smoothing functions that use sliding
windows always have a problem at either the left edge, the right edge, or both
(when a symmetrical smoothing algorithm is employed). They run out of points
and have to extrapolate/fake a number of points equal to the window size. Such
extrapolated points can exhibit extreme behavior, zooming up or down
unexpectedly and unrealistically.

Previously PyOTE treated this as a cosmetic problem and relied on the observer
to be aware of the end point effects and ignore them. But that puts a burden on
the user to be well informed about what's going on. As one of the goals of
PyOTE is to enable infrequent/inexperienced users to get dependable results
without requiring in-depth understanding of the internal workings of the program,
we have decided to make the end-point smoothing issue very apparent by doing
an automatic 'trim' of the points affected by extrapolation.

version 3.5.1
• Added additional references to the North American Excel Spreadsheet report in

the new section of the final report that bangs on about the start-of-exposure
timing convention.

version 3.5.0
• When PyMovie files are read, the aperture names are now being used in the

data table (lower left panel) as column headings and used during the 'write csv'
process. This makes the format of the PyOTE csv file match the PyMovie
format so that AOTA can read both PyMovie csv files AND PyOTE csv files.

• NEW: when 'trims' have been placed, a 'write csv' process will honor those
values and produce a 'trimmed' output file.

• NEW: when a light curve has been 'normalized', the changed values are written
to the data table where, once again, a 'write csv' process will capture the results.

• Added additional reminders that the start-of-exposure timestamp/timing
convention is employed.

version 3.4.9
• Added some explanatory language to the “Excel report” section regarding the

proper interpretation of the 'false positive probability' number.

version 3.4.8
• This version deals more realistically with high magDrop lightcurves by defining a

'limiting magDrop' as:

limMagDrop = 2.5 * log10(B / std(A))

std(A) is the noise level of A.
 B = average baseline intensity
 A = average event intensity

Normally, we report/calculate magDrop = 2.5 * log10(B / A), but this calculation
becomes increasingly unreliable as the value for A gets very small. And when A
is noisy, it is even possible to statistically have A become negative for large mag
drop lightcurves. This happens more and more as A approaches and then
becomes smaller than std(A). For example, if A happened to be equal to std(A),
the normal distribution of A values tells us that 84% of possible A values are > 0
and so can be used in the regular magDrop equation. The other 16% of the time
we can only report that the calculation could not be performed.

The above observation suggests that reliable estimates of magDrop require that
A be greater than std(A) --- that is the ad hoc reason that we have defined
limMagDrop as we have.

This value is substituted for a calculated magDrop whenever A is less than
std(A), i.e., whenever A is at or below std(A).

limMagDrop values are reported with a leading > symbol to signify that that
value is a limMagDrop value. They are easy to spot in the report.

version 3.4.7
• Automatically loads the correct version of Adv2

version 3.4.6
• Adds AAV Version 2 file as a type that can be read (important when Do OCR

check is enabled)

version 3.4.5
• Fixes block integration which was failing when more than 4 lightcurves were

being processed.

• Made use diff and Do OCR checkboxes sticky.

version 3.4.4
• PyMovie files can have lightcurves extracted from more than 4 apertures (with

user supplied names). This version allows all lightcurves from PyMovie files to
be read and made available for processing. Prior to this change, only the first 4
lightcurves were read.

Note: when you change the lightcurve to be analyzed (with the spinner), the log
panel will show the aperture name for that lightcurve. That happens when the
reference lightcurve is changed as well.

These changes are to PyMovie file treatment ONLY.

version 3.4.3
• Fixed bug that required an entry in dist(AU) and speed(km/sec) edit boxes for a

solution to be found (the empty entries were causing an uncaught exception).

The intention is that PyOTE should work as it always did if a user ignores the
new lightcurve parameter panel and makes no entries. This 'fix' was required to
make that happen.

version 3.4.2
• Cosmetic change again: added a spinner to control line widths in plots so that a

user can adjust for the resolution of the screen in use. I design on a 5120x2880
screen and needed lines to be 3 pixel wide to suit my taste. But some users
have screens with 1280 horizontal resolution and those same 3 pixels became
unsightly fat lines --- now there's a choice.

version 3.4.1
• Some cosmetic changes: thinner vertical thins for edge position and error bars;

checkboxes to control whether the underlying lightcurve is plotted, error bars are
plotted, or edges are plotted --- a cleaner plot is the major result and you have
better control over the 'look'

• Added a checkbox to disable the automatic display of D and R frames from the
video for OCR quality control checks. When there are no concerns about OCR
reliability (true for me nearly all the time), it can be annoying to have to close the
frames all the time.

• The BIG change is the addition of a penumbral curve fit procedure. It's a bit
fiddly, so I included a test lightcurve with the download. I can't give you a
specific location for the file because it depends on details of your particular
installation. Find where it is by searching for example-penumbral.csv When
you find it, copy or move it to some other folder because if you process it where
it resides, other files will get added in your installation directory --- we really don't
want extraneous non-program files floating around in your installation directory.

To learn how to use the new procedure (which is a bit 'fiddly'), right-click on the
penumbral fit checkbox --- be patient; play around.

version 3.4.0
• Adds the ability to specify a diffraction lightcurve for use in timing the event. A

new panel with edit boxes for asteroid/occulting body distance (in AU ---
astronomical units) and asteroid/shadow speed (in km per second) has been
added. These values are needed in order to calculate a diffraction light curve.

In addition to modeling diffraction effects, one can add the effect of a finite star
disk to produce a penumbral curve. NOTE: PyOTE does not yet have the ability
to correctly analyze a penumbral curve where it takes more than 1 or 2 readings
for the transition. That project is under way and will be in the next version.

version 3.3.9
• Automatically installs cv2 if not already present. This package is needed for the

new frame view feature.

version 3.3.8
• If the video referenced in the csv file can be found, there is now an automatic

display of the D and R frames relevant to calculating correct D and R times so
that the user can verify that timestamp OCR extracted the correct timestamp
values.

version 3.3.7
• A new button (View frame) with an associated spinner for entry of a frame

number has been added:

Use this button to view a frame from the video that was used by PyMovie or Limovie to
prepare the .csv file that is currently being analyzed. .avi and .ser files are viewable in
this manner as well as .fits files inside a FITS folder.

If this button is disabled, it is because the .csv file did not come from PyMovie or
Limovie or simply cannot be found/opened.

This feature can/should be used as a final quality control check for a video that
contains timestamps extracted using OCR. It is possible for OCR to fail in manner that
is not detected by PyOTE because the program only verifies that there is a consistent
step (delta time) between frames. If a high order digit in the timestamp has been

consistently misread, substituting a 8 for a 9 in the minutes field for example, the steps
can be consistent while the reported time of the event will be seriously in error.

ALL time reporting is derived from the timestamp(s) associated with D and/or R (the
integer values, not the sub-frame values). If those timestamps are correct, the reported
times will be correct even when there may be a few missing or duplicated frames. So
best practice is to enter the D frame value in the spin box and visually confirm that the
timestamp that you can see is the same as that extracted by the OCR procedure.
Repeat for R.

Another use for this feature is to handle the case where there is a visual timestamp, but
either OCR was not activated during the .csv preparation, or the timestamp overlay
came from an unsupported VTI type. The workflow would be to let PyOTE find the D
and R frame values, but before pressing ... write report, do a Manual timestamp
entry for the D and R frame entries found by viewing the relevant frames and entering
the correct times in the Manual timestamp dialog.

It should be noted that the manual timestamp entry can be performed even when
timestamps were already present in the file --- your manual entries will cause all the
timestamps to be recalculated.

version 3.3.5:
• Changed usage of max([a, b ,c]) to max(a, b, c) to see if this allows the Numba

JIT compiler to work for one user that found version 3.3.4 failed to load/compile.

This should have no effect on users that already have version 3.3.4 working.

version 3.3.4:
• To shorten the time to find 'solutions', I used the Numba JIT (just-in-time)

platform independent compiler that produces machine code from Python byte-
code. You may notice a very slight increase in the time to start-up PyOTE
because I do those compile operations while PyOTE is being loaded.

version 3.3.2:
• Adds a false-positive probability calculation and printout in the final report. This

number is the fraction of 'false drops' found during the 50,000 tests that are
greater than or equal to the drop value extracted from the actual observation.

version 3.3.1:
• Adds a 'false positive' detection to the final report. A new plot has been added

to the error bar plot. It shows the distribution of drop sizes (B-A) for an event of
the size (duration) extracted from the actual observation, but with only correlated
noise in the sample (the number of points in this sample is equal to the number
of points used in the lightcurve extraction). 50,000 attempts are made to find
the deepest event that appears (falsely) when there is only noise being
analyzed. If the drop from the actual observation is greater than the maximum
size of a 'false drop', we have some assurance that the event extracted from the

actual observation did not happen 'by chance'.

version 3.2.9
• Changed main plot so that the scroll wheel only zooms the x axis.
• Changed lightcurve plot so that it conforms properly to 'start-of-exposure'.

version 3.2.8
• Changed font size in help files --- it was fine for Mac but too big for Win10

version 3.2.7
• Removed the 'hover-for-help' and replaced it with a 'right-click-on-item' to get

help. This scheme was introduced in PyMovie and I found it easier to use than
the 'hover' scheme. In practice, the 'hover' popped up when it was not needed,
so most users eventually disabled it. As a result, it became so tedious to look at
help --- enable hover; hover; read; disable hover --- that the help system was
used less and less. The right-click-for-help is always available and easily
invoked --- hopefully this will encourage more frequent reference to it.

version 3.2.6
• This is a 'cosmetic' release --- there should be NO detectable differences from

version 3.2.5 in terms of functionality.
• All python files were brought into compliance with PEP 8 coding standards.

Only I care about that.
• More significantly, I removed the dependency on C code by using Numba as a

code accelerator instead of Cython. As a result, I no longer need to compile
separate code versions for Mac, Windows, and Linux. That makes my life
easier, but you should experience no operational changes.

• All this 'cosmetic' work is in preparation for working on PyOTE issues again.

version 3.2.5
• Added special test for Tangra files to detect the empty fields (which MUST be

fixed) that Tangra outputs whenever it has trouble extracted a value from an
aperture. It prints a message and stops all further processing, forcing the user
to attend to and deal with the missing values.

version 3.2.4
• Modified the test for newer version to accommodate the different strings

returned by pip 18.1 and pip 19.0+
• Added ability to invoke PyOTE from PyMovie with an externally supplied csv file

that is automatically opened.

version 3.2.3
• fixed a long overlooked bug in the loading of the data table (at lower left corner

of GUI): when there are four lightcurves, LC4 was set in the table from LC3 (i.e.,
LC3 == LC4 whenever there was an actual LC4. It was correct in the lightcurves
themselves, so no observation analyses have been affected by this bug. It was
cosmetic only.

• Added support for the PyMovie csv format

version 3.2.1
• this version makes PyOTE more robust to a common 'cockpit error' that users

have been making with Tangra files. Specifically, if a Tangra csv file is opened
in a spreadsheet program, then saved from that spreadsheet program, the
original csv file gets modified and overwritten by the addition of empty fields at
every row sufficient to match the number of columns in the longest
header/comment row --- the spreadsheet program did this to satisfy its internal
requirement that every row have an equal number of columns. The result is
superfluous commas at the end of data lines (that Tangra did NOT put there).
Until this version, that 'butchered' file could not be read. This version adds code
to parse data lines only up to the first non-empty column. Hopefully this will not
have ramifications in the future (like a format change that has empty fields
followed by non-empty fields --- not a likely expectation).

version 3.2.0
• Changed GUI to better align text on min max edit boxes to avoid confusion.

version 3.1.9
• Fixed a bug in the test for a min/max solution search being constrained by a too

large min value.

version 3.1.8
• version 3.1.7 was released without an updated version history. Here is what

was changed in 3.1.7:

• Added the ability to write the data table that is displayed in the lower left corner
of the GUI out as a csv file. Now, if timestamps and block integration operations
are performed on the input file, those results can be preserved in a csv file.

A 'file save' dialog is provided should you wish to change the default name and
location of the resulting file. The default name is that of the input file with the
text .PYOTE inserted to the left of the .csv extension. The default location is the
directory of the input file. It is recommended that you accept these defaults
unless you have compelling reasons to do otherwise.

version 3.1.6:
• Values entered in the Manual Timestamp Entry dialog box are now 'sticky', thus

making corrections easy to do without requiring re-entry of all data.

Also trapped is the case where a user has entered a custom frame time but
failed to click the radio button indicating that it is to be used.

version 3.1.5:
• Added additional tests of candidate solutions against a straight line so that there

should always be agreement between a solution found by a min/max event size
search and a marked D and R region search of the same area.

Previously it was possible for the min/max search, which searches the entire
light curve, to be tripped up by what we call a 'competitor'. A 'competitor' is an
'event' with good statistics. However, that 'competitor' may have a small
magDrop and so later be rejected when we compare with a straight line solution.
That 'competitor' would thus mask an event with slightly worse statistics but a
larger magDrop. The change was to test every candidate against a straight line
during the search. This does make the search time longer, but not too much
longer.

version 3.1.4:
• Fixed error in new dropped reading detection logic when light curve was

processed in field mode.

• Cleaned up some language in tooltips.

version 3.1.3:
• Expanded manual timestamp preset time deltas to include NTSC and PAL field

times. Also added ability to evaluate numeric expressions entered in the
'Custom time' box: now you can type 1.001/60.0 in that box if you wish.

• Eliminated the 'entry num' column in the data matrix at the lower left of the GUI.
The 'entry num' is unused and a possible source of confusion with the frame or
field number for the unwary.

• Added all the light curves read from the input file to the data matrix display.
Previously, only the first light curve values were displayed. This is done in
anticipation of adding a 'write csv' button to memorialize the result of a manual
timestamp entry.

version 3.1.2:
• Added a test for possible dropped frames identical to that done in R-OTE when

manual timestamp is utilized. The test is to calculate the expected number of
frames based on standard NTSC/PAL frame times and compare that number
with the count of frames enclosed by the early and late timestamps. If there is a
mismatch of more than 0.12 frames, a warning is popped up and a log entry
made. It is possible to use a 'custom' frame time if your camera differs from
either of those standards.

version 3.1.1:
• A convenient way to search for a 'solution' is to set a min and max event size

rather than mark D and R regions. This is particularly useful in low snr
situations where the D and R edges may be quite diffuse. However, if one sets
the min event too large or the max event too small, the resulting 'solution' will be
artificially constrained and thus be wrong. This situation is now detected and a
log entry as well as a pop-up alert will tell the user to change the limits and try
again.

• Three magDrop values are now calculated for each confidence level: the largest
magDrop calculated using B + err(B) along with A – err(A); the nominal
magDrop calculated using B and A; the minimum magDrop calculated using
B – err(b) along with A + err(A)

• The labels on the Find Event button and the Calc Err Bar button were changed
to more clearly suggest that after finding an 'event', one should then press the
'report' button to the right in order to complete the process.

version 3.1.0:
• Added a Mac version of a pyote startup file. It is automatically placed on the

Desktop the first time pyote is run. Double-clicking on that Desktop file icon will
start pyote thereafter.

version 3.0.8:
• Added a Windows batch file to the distribution that, when executed, will startup

pyote. The file is called PYOTE.bat and is automatically copied to
C:\Anaconda3 (if it is not already there) when pyote is first run. Now, to create a
clickable desktop icon for starting up pyote, a user need only go to the
C:\Anaconda3 directory, locate the PYOTE.bat file, create a shortcut to it, and
drag the shortcut to the desktop. Remember, that file does not appear until the
first run of pyote.

The ‘skipped’ version numbers were caused by the need for repeated testing of
this new feature, each test requiring a new version, even though functionality did
not change,

version 3.0.1:
• Restored the vertical splitter between the command/plot area and the

table/report area. Somewhere along the line this capability was accidentally
removed, and the lack of the splitter was not noticed. Now it’s back.

version 3.0.0:
• No code changes. This version is the same as 2.1.6 except that it is built on

python 3.7. The previous versions used python 3.6. This allows new users to
install the latest Anaconda3 version (which installs python 3.7) without fiddling
with archived Anaconda3 versions.

version 2.1.6:
• We now disable the Accept integration button on the first left click in the light

curve. As such a click removes the color bars that result from the automatic
block integration analysis, it seems intuitive to disable the Accept integration
button at that time as well.

version 2.1.5:
• Disable the Accept integration button when user overrides an automatic block

analysis with a manual block selection followed by a click on the Block integrate
button.

version 2.1.4:
• Corrected a bug that kept manual selection of block integration from being

performed after a refusal to accept the automatic block analysis results.

version 2.1.3:
• A minor change to how color bars are plotted when the automatic block

integration feature is employed. The edges now appear between data points so
the bands are easier to see, particularly for 2 point block sizes.

version 2.1.2:
• To ease usage of the automatic block integration feature, accepting the

automatically determined block integration parameters no longer uses a modal
query box, which interfered with the ability to explore/expand the light curve plot.
Now there is separate button which gets enabled after an automatic block
integration completes.

version 2.1.1
• Added progress bar tracking of block integration analysis because it can take an

extended amount of time to complete the analysis when the light curve has
many points.

version 2.1.0
• Added automatic determination of 'correct' block size and offset for block

integration when user clicks Block integrate button without selecting the two
points normally required to specify integration block beginning and end. The
user can choose to accept or reject pyote's opinion of the correct parameters to
use when the automation determination is invoked.

version 2.0.9
• Made the selection of Tooltip display 'sticky'
• Duration calculation when D and R span midnight now handled correctly

version 2.0.8
• toolTips changed to invoke and display in a custom dialog box that can be

moved and resized to better accommodate legacy displays
• Calc flash timing calculation fixed to properly deal with the non-integer frame

numbers that can result from field processed csv files
• Flash timing has been verified to work with integrated light curves
• Made block integration 'sticky' in that a 'Start over' no longer undoes a previous

block integration. As a result, once block integration has been performed after a
file read, it cannot be done again; a reread of the original file is now required.

version 2.0.7
This version provides several features to ease the processing of light curves that are
timed with LED flashes from iPhones (John Grismore's AstroFlashTimer) or Android
phones (Eric Couto's Occult Flash) rather than VTI timestamped files

• Adds a button to calculate the edge position of an LED timing flash.
• Adds a checkbox to enable/disable the tooltip messages that appear when a

control is hovered over. Tooltip display defaults to 'enabled' because tooltips
are an important aid for guiding users initially. Later, when such help is no
longer needed, the user can turn them off (they are annoying when you don't
need them).

• Adds the ability to select which light curve is to be analyzed. Previous versions
would only analyze the first light curve for D and R events. This flexibility is
useful in general, but was particularly needed to support LED flash timing.

• Adds a checkbox to force manual entry of timestamp info. This is useful when
OCR on a VTI timed light curve has catastrophic errors. It is always employed
when using LED flash timing.

• During the error bar calculation, it is possible for the Cholesky decomposition
needed for treating correlated noise to fail. Previous versions treated this as a
fatal error and would not produce a final report. This version instead treats the
noise as uncorrelated and continues processing to produce a final report.

version 2.0.6
• Added additional instruction in the popup that appears when no timestamps are

found in the csv file. This will give casual users additional guidance and
clarification for the manual timestamp entry process.

version 2.0.5
• files generated by pyote now contain PYOTE in the filename.

• Timestamps can be corrupted to the point that a timeDelta of 0.0 can result.
This version traps that event and reports it clearly --- 2.0.4 failed silently with a
divide by zero exception

version 2.0.4
• improves the handling of errors during the reading of Tangra files by showing

the offending line in the report panel. Tangra, if it has a tracking problem (i.e.,
loses it) will emit an empty field for that measurement, leaving it up to the user
to decide how to fill in the missing value. Prior pyote versions simply reported
'format error' without providing a printout of the offending line. This version fixes
that.

version 2.0.3
• detects and handles situations in which fewer than 14 baseline points are

available for calculation of correlated noise coefficients. When fewer than 14
points are available, the correlation coefficients are set to: [1, 0, …] (i.e.,
coefficients are set to 'no correlated noise')

version 2.0.2
• Note: this version has many significant changes. If you lose confidence in this

version, remember that you can always go back to version 1.47 by typing ---

pip install pyote==1.47

in an Anaconda console. (Be sure to use double == signs in the command.)

• improved handling of D and R region selection so that one cannot enter an
invalid configuration --- automatic corrections/changes are applied.

• incorporates a new 'solver' that no longer requires an initial estimation of
baseline noise. This 'solver' is also much faster. With this 'solver', the two-pass
modification added in version 1.46 is no longer needed.

• removes unneeded 'analyze noise' buttons and rearranged other buttons to be
in-line rather than one above the other to allow the vertical splitter between the
plot area and report area more room to change (a help to those using screens
with relatively low pixel densities).

version 1.47
• adds bold red highlighting to message:

! There is something wrong with timestamps at D and/or R or frames have been dropped !

so that it is harder to miss.

version 1.46
• adds automatic recalculation of baseline and event noise parameters utilizing all

available data points during a second solution pass; this removes the variability
in calculated error bars due to user selection of a necessarily less complete set
of data points for noise analysis during the first solution pass.

• adds bold blue text in the 'Excel' portion of the final report to indicate whether or
not the light curve was block integrated, trimmed, or normalized. Failing to block
integrate a light curve that needed it is a common error. Highlighting the
presence or absence of block integration in the most looked at portion of the
final report will hopefully help reduce the number of such errors.

Version 1.45
• the initial fully functional release of pyote.

Introduction to pyote
Bob Anderson (bob.anderson.ok@gmail.com)

pyote is an occultation timing extraction utility program written primarily in python and
distributed through PyPI (the python package repository).

This program is specifically designed for those who will use such a program infrequently; it
has been designed to the best of my ability to produce consistent results in the hands of both
infrequent and frequent users --- the same results should be obtained no matter who
processed the data.

One important feature of the program intended to give confidence to the occasional user is
the production of a log file that documents all processing steps/decisions made in sufficient
detail that anyones result can be reviewed by more experienced users easily --- it is sufficient
to simply send such a reviewer just two things: the light curve and the log file.

1. pyote is designed for ease-of-use in the analysis of occultation light curves that can be
modeled reasonably well with a model based on geometrical optics. Such light curves
are common with star/asteroid occultations when the star is effectively a point source
and the asteroid transit speed is such that diffraction effects are masked by the natural
integration effect of the camera operation coupled with the frame rate of the video
recorder.

2. Correlated noise caused by atmospheric scintillation is frequently present in
occultation observations recorded at normal video rates of 25 or 30 frames per
second. pyote utilizes statistically rigorous calculations to properly characterize the
increased uncertainty in D/R time estimates due to such correlated noise. Additional
noise correlation is often present due to the relatively slow electronics present in low-
cost frame grabbers and in the camera electronics responsible for generating the
composite video output.

3. Physically realistic models (but based on geometrical optics) are fit to the light curves
with all decisions about details (complexity) of the model used made using the Akaike
Information Criterion (AIC). In particular, an AIC calculation is always used to justify or
reject sub-frame timing.

4. Maximum Likelihood Estimation is used throughout to determine 'best fit' of model light
curves to the actual data.

The gui for pyote is designed to lead the user through the necessary steps by enabling the
buttons in sequence as each task is performed. So, initially, only two principal buttons are
enabled: the 'info' button that brought up this document and the 'Read light curve' button.
After reading this document, open a light curve, and follow the enabled buttons.

All of the major buttons have hover text associated. To learn (or refresh) how to use the
program to analyze a light curve, spending a little time 'hovering' on the buttons will pay
dividends.

mailto:bob.anderson.ok@gmail.com

pyote will never change the input light curve, so experimentation is encouraged. There is a
'Start Over' button at the bottom that I encourage you to use freely.

Every step you make in the analysis is recorded in a log file. This is done because
experience has shown that some light curves are touchy to analyze and it is useful to ask
someone more experienced in running the program to look over your work. With the original
light curve and a copy of the log file, your work can be exactly duplicated by someone else.
And that log file is never deleted once it is opened for a particular light curve; it is simply
appended to, so a record of each 'experiment' is thus always available.

Every time pyote is started, it connects to PyPI (assuming you have an internet connection)
and checks to see if a more recent version of pyote has been added to the repository. If your
version is completely up-to-date, you will see this

in the log file panel in the lower right-hand corner of the gui. Otherwise, this will appear:

Normally, you will want to click 'yes'. That will cause your current version of pyote to install
(but not run) the newest version. Of course, to execute that new version, you will need to do
a close and reopen.

As convenient as this is, there is always a small risk that a new version will actually 'break'
something and that the 'cure' may take some time to be posted. But it is always possible to
return to a specific previous version of pyote. The procedure to do this is explained below.

Open an Anaconda Prompt window if you are running Windows.

For a Mac installation, open a command window and type source activate.

Then, type the following line in that command window:

1. pip install pyote==1.42

This command will uninstall the current (flawed) version of pyote and installs a specific
version, in this case, version 1.42. Note the double == followed by the specific version
number to be installed. (You can always determine a version of pyote that was
working for you by opening a recent log file --- the pyote version that produced that log
file is recorded there.)

