
Version history (PyOTE description – out of date - is at end)

Version 5.0.7 22 January 2023

• Fixed insidious and dangerous bug in VizieR tab that caused site coordinates to be
saved and restored incorrectly.

Version 5.0.6 19 January 2023

• Fixed some data entry/edit issues in the new Other models tab.

• Fixed a bug in the edge-on-disk model that was causing edges to be misplaced when
D and R limb angles were unequal and the D angle was not 90 degrees. This was
noticeable in the model-example provided for testing/training.

Version 5.0.5 17 January 2023

• Fixes squarewave solution display to (once again) honor the checkboxes that control
camera response, raw light, and edge plotting.

• Adds a tab for exporting VizieR archive lightcurves

Version 5.0.3 9 January 2023

• model-examples folder is now being placed in the Documents folder rather than the
Desktop folder.

• Launch from python3 or python or py now detected and dealt with when checking PyPI
repository for latest version.

Version 5.0.2 8 January 2023

• Added timing problem report – counts of dropped readings; duplicated readings;
cadence error. These appear in the log box (lower right corner) and are written to the
log file.

• Made D and R edge time calculations work properly even when there are dropped
readings in the observation

Version 5.0.0 6 January 2023

• Added ability to specify a block size to be used during automatic block integration.
When a block size is entered, the program will determine the best offset value to use
for the integration.

• Added a comprehensive set of lightcurve models together with tools to help automate
the fitting of the new models to observation data. Models included:

o Diffraction (including central spot for low rho events) using physical optics
o Disk on disk (geometrical optics) for large stars
o Edge on disk (geometrical optics) for large stars and limb angles on asteroid

Version 4.9.2 14 August 2022

• Added various tests involving the penumbral fit process to gently lead the user back to
the path of rightness should that user try to do a ‘fit’ without loading a light-curve and/or
not marking D and R regions.

Version 4.9.1 10 August 2022

• In the diffraction tab, added a selection box so that asteroid distance can be entered
either in parallax (arcseconds) or AU. Also reviewed and added to the context help on
this tab to be more explanatory.

Version 4.9.0 9 August 2022

• Added a button to the diffraction tab for use during penumbral fits to do a re-fit.

Improved (hopefully) the context help regarding the selection of D and R regions for a
penumbral fit (cautioning the user to only include points from the penumbral transition).

Version 4.8.9 8 August 2022

• Timestamp error lines now distinguish between 'cadence jitter' and 'dropped frames' by
using an additional color.

Cadence jitter happens when high frame rates create a situation where frame record-
ing cannot keep up and the traffic control implemented by the computer changes the
arrival/timestamp time of frames so that some appear a little earlier and others a little
late.

Cadence jitter is defined as a timing discrepancy of between 20% and 80% of a frame
time and is represented by a yellow line.

Timing discrepancies greater than 80% of a frame time continue to be shown as a red
line and are assumed to come from dropped frames. In any case, they deserve
attention.

Version 4.8.8 7 August 2022

• Added message at normal program close to the effect that QBasicTimer messages
that appear after the program has closed are harmless artifacts of the order in which
QUI elements are closed.

Version 4.8.7 29 July 2022

• changed numpy version requirement to match that of PyMovie so that ultimately the
two programs can share a virtual environment, thus saving much space.

Version 4.8.6 23 July 2022

• added instructions telling the user how to install a new version when one is found.
There are instructions for pip based installations and pipenv installations

Version 4.8.4

• there are no changes. This is a new version just to test the change introduced in 4.8.3
about version detection and handling thereof.

Version 4.8.3

• this version removes the offer to update to a newer version when one is found. This
has been done primarily to allow an easy transition to a distribution method that does
not require the installation of Anaconda3, but it also gives the user more control. When
a newer version is available, a message to that effect will be shown but otherwise the
user’s workflow is not interrupted by a ‘nag’ about ‘do you want to download the newer
version?’.

Version 4.8.2

• changed the format of the false-positive probability report because very small but non-
zero values were showing (confusingly) as probability 0.0000 That no longer can
happen.

Version 4.8.1

• fixes automatic block integration failure under Win11.

• makes pyote install for new version update use pipenv if present

Version 4.8.0

• adds PyQt5 to list of required packages in support of using pipenv to install PyOTE
without the need for an Anconda3 installation.

• removes the writing of the startup batch file as a different method will be used in
conjunction with pipenv.

Version 4.7.9

• disables the compiling to C code (which was done to increase execution speed) of
routines used for finding an event using min/max size. There is compelling (but
indirect) evidence that the C compiler on Win11 (and maybe only for the i5 processor)
is generating incorrect code. This issue showed up recently with 2 users who had
installed Win11 on i5 processor-based computer. On those machines, finding an event
using min/max would always hang at 99% completion. Allowing the original Python
code to be used instead of compiling to C-code resolved that issue. As finding an event
using min/max size minimizes the number of candidate solutions naturally, the loss of
speed is not so important – it’s fast enough.

version 4.6.4

• made the 'camera response' checkbox (in the Settings/misc tab) sticky

• corrected the log messaging about Donly, Ronly, DandR, and min/max directions to the
solver consistent

version 4.6.3

• in detectability: logged new 'drop message' to the detectability.log

version 4.6.2

• in detectability: when event duration is or becomes less than the camera exposure
time, the observed drop is reduced proportionately

version 4.6.1

• in detectability: changed calculation of number of event points from
ceiling(dur/rdgTime) to round(dur/rdgTime)

• in detectability: allow a single point event.

• In detectability: stop stepping down duration when calculation of number of event
points reaches zero

version 4.6.0

• clarified the titles on detectability plots

version 4.5.7

• suppressed a 'min event limit too high' message when min event is set to lowest
possible value of 2

version 4.5.6

• removed the 'busy code' which changed the mouse cursor to “I'm busy”. This seems to
have the side effect (on some computers – but none of mine) of suppressing the cursor
change when hovering over a splitter. As this is confusing, the busy cursor feature has
been removed.

version 4.5.5

• fixes a bug where, if a full D and R light-curve was split (trimmed) into a D-only and an
R-only light-curve, the R-only result did not apply subframe timing adjustments

version 4.5.4

• cleans up the the first bin of the False-Positive histogram

version 4.5.3

• adds an option to validate a single point event to the Analysis tab. It uses the false-
positive test procedure to determine if the selected point had a non-zero chance to
have been caused by baseline noise alone.

version 4.5.2

• fixes a bug where transition points (only present in high SNR light-curves) were not
properly ignored during calculation of event noise. This manifested itself most clearly in
too large error bars for magDrop

version 4.5.0

• fixes a bug introduced with the NE3 code changes that inhibited sub-frame timing
adjustments.

version 4.4.9

• fixed yet another manisfestation of the bug introduced in version 4.2.1
version 4.4.8

• fixed another manifestation of the bug introduced in version 4.2.1

version 4.4.7

• fixes a bug introduced in version 4.2.1 (February 8, 2022) that caused D values to be
calculated as occurring 1 reading early

version 4.4.5

• added a checkbox to enable selection of whether or not the camera response curve is
shown on the lightcurve plot

version 4.4.4

• detectability and normalization activities are written to dedicated log files:
 *.detectability.PYOTE.log
 *.normalization.PYOTE.log

version 4.3.8

• suppressed writing of detectability results and normalization activities to the log file.
The 'writings' still appear in the normal place, they just don't get written to the log file.

(Later I may direct such stuff to a separate log file.)

version 4.3.7

• removed the Pearson R metric – it was confusing and ineffective compared to the
simple standard deviation metric

• made it possible to select the points of the normalized target lightcurve to be included
in the std metric

version 4.3.6

• added a simple metric as an aid to selecting an appropriate number of readings to use
to smooth the reference curve used for normalization. It is printed in green whenever
normalization is active. It is simply the standard deviation of the normalized target
lightcurve. Although it is quite simple, it is a value that is minimized the more level and
the less bumpy the normalized target curve is.

When normalization is active, at each change, a pair of metrics are printed in the log
panel.

The red metric is the Pearson R value of the correlation between the target lightcurve
and the reference lightcurve; it should be maximized (using the X offset spinbox of the
reference curve) at the point where the two curves are properly time-aligned. It is also
affected by the smoothing interval, but this connection should be ignored.

The green metric is the standard deviation of the target lightcurve – it is lowered when
the target lightcurve has a minimum slope and the fewest and shallowest bumps. Use
the spinbox for the number of readings in the smoothing interval to minimize this
number.

version 4.3.5

• made the 'step-by' buttons radio buttons so that it is clear what the current step size is.

• removed the automatic switch to the Lightcurve panel

version 4.3.3

• added a Pearson R calculation whenever normalization is being performed. This may
be an aid in aligning time shifts between the target lightcurve and the reference
lightcurve.

The idea is that the user will observe this value as left and right (X offset) shifts are
performed and choose the position that gives the highest positive value for this number
(it will always be between 1.0 and -1.0).

version 4.3.2

• adds step size selection for the Y offset spinboxes

• activates the 'show' checkbox on reference curves so that the reference curve display
can be turned off – but it will still be active behind the scenes, just not visible.

version 4.3.1

• fixes an error message that occurs during the initial installation of a version that has a
change to the number of tabs in the GUI

version 4.3.0

• minor cosmetic cleanup to deal with Windows GUI differences (I hope it works – this is
always a frustrating and mysterious area)

version 4.2.9

• adds the lightcurve used to the report generated during the detectability analysis

• automatically clears the effect of previous normailzation when the reference lightcurve
is changed (or deselected)

version 4.2.8

• fixes 'trim problem'

• adds 'step by' buttons that change the smoothing interval spinbox step size.

version 4.2.6

• tidies up the lightcurve panel a bit and changes color samples for target and reference
curves.

version 4.2.5

• completes implementation of the time shift (left/right shift) of the reference curve for
normalization.

• adds dot color samples next to the lightcurve titles.

version 4.2.4

• makes tab/panel order sticky

• analysis tab always opens first, but automatic switch to Lightcurves tab occurs upon
file read.

• 'target' lightcurve cannot no longer be moved up or down. If there is an overlapping
lightcurve, move the non-target lightcurve to clear the overlap.

version 4.2.3

• fixes block integration that was broken by the new lightcurve selection code.

• partially implements time shift of the reference curve for normalization – the visual shift
is implemented, but the supporting math is not in place so the normalization is currently
unaffected by the reference lightcurve shift; normalization is done with the unshifted
reference curve – this is just a necessary step in the code development..

• adds logging/reporting of the curve (if any) used for normalization and the smoothing
interval used.

version 4.2.2

• adds a new tab/panel for controlling the display of lightcurves. From the 'help button'
on that tab:

This panel allows up to 10 lightcurves to be displayed at the same time. If the csv file has
more than 10 lightcurves, the first 10 are displayed.

The target lightcurve is always drawn with bright blue dots.

If a lightcurve is selected as a reference to be used for normalization, it is always
drawn with bright green dots.

Unless a lightcurve is designated as a target (curve to be analyzed for an event) or is
designated as a reference lightcurve, its dot color depends on the row it is in - every
row has a unique color other than blue or green.

Lightcurves can be displaced up or down using the Y offset spinner to control the
displacement. This affects the display position only; the underlying values are not
affected. This facility was added to allow the separation of lightcurves that would
otherwise overlap in a confusing manner.

There can only be one lightcurve selected as target.

There can be either 0 or 1 lightcurve selected as a reference for normalization.

Normalization is applied whenever the normalization reference curve smoothing
interval spinbox is changed from 0. Whenever this number is changed, a new
normalization will result. If this number is returned to zero, all normalization is removed
and the original values restored.

The X offset spinbox is not yet implemented. Its (future) purpose is to allow the
reference curve used for normalization to be 'time shifted' for those cases where a
drifting cloud affects lightcurves at slightly different times.

• the normalization itself has been simplified so that no user input is needed other than
the number of readings to be used in the smoothing procedure. The smoothing
procedure is a double application of a first order Savitzky-Golay filter (a straight line) to
the points included with extrapolation.

• added (back again) a spinbox on the Setting/Misc. Tab that allows the dot size used in
lightcurve plots to be changed.

version 4.2.1

• fixed final report showing NE3 stuff even when NE3 not in use was checked.

version 4.2.0

• improves annotation on Detectability plots by including the magDrop information.

• eliminates the display of negative drops in the False-Positive histogram

version 4.1.9

• fixes (hopefully) Win 11 issue involving the directory separator character \
Win 10 accepts / as a separator – Win 11 apparently does not (unless there is some
setting that will persuade Win 11 to accept either separator.

version 4.1.8

• adds option to write sample light-curve from detectability analysis to a csv file that be
imported to PyOTE.

version 4.1.7

• adds the requirement to specify an observation duration when doing a detectability test

• during a detectability test, if a detectable event was found, a sample light-curve
showing such an event is plotted, otherwise the normal False-Positive plot will be
shown.

version 4.1.6

• reenables Cholesky failure messages (disabled for testing)

• Adds test to detectability routine so that the user cannot give an event duration that
requires more points than are available in the observation.

version 4.1.5

• changed error bar calculation reporting so that the the value reported in the
containment interval report matches that reported in the Excel final report when there is
no asymmetry present.

version 4.1.4

• This version adds tools needed to make best use of the Night Eagle 3 camera, the
successor to the Night Eagle Astro camera (which is no longer in production). They are
all grouped on a new tab page titled Night Eagle 3.

• The Night Eagle 3 is a rolling shutter CMOS camera. As a result, with this camera, the
timing of an occultation depends on which row the occulted star is at when the
occultation occurs. PyOTE will automatically calculate the needed time correction from
the y (row) position that you enter in the spin/entry box at the bottom of this tab.

• For the Night Eagle 3, times extracted by PyOTE require only a VTI correction (if you
use an IOTA VTI, there is no correction at all needed).

• Note: if the recording was not made with a tracking telescope (so the target star is
moving across the image), you will need to watch the video and record the row of the
occultation for use in this program. Normally, with a tracking telescope, you will be able
to use the y position of the 'target' aperture directly. PyMovie includes this information
in the comment lines of the csv file.

• The Night Eagle 3 has a very effective noise reduction system called DNR (Dynamic
Noise Reduction). There are 4 levels of noise reduction and you will need to indicate
on this tab page what DNR setting your recording was made with.

• The noise reduction is not without a small cost however - the edges of an occultation
light-curve will no longer be a step change. Instead, the edges will follow an
exponential curve, approaching maximum and minimum intensities asymptotically.
PyOTE has the ability to fit such an exponential curve to the D and R transitions, so the
time resolution will be restored during the least squares fit and you should feel free to
use whatever level of noise reduction you may need. It is recommended that you run
your NE3 at a gamma of 0.75 (1.0 gamma is not available) AND that you use PyMovie
to linearize the recording (i.e., invert the 0.75 gamma curve of the camera).

• The D and R exponential curves each have their own time constant, measured in
frames, that control the frame rate of exponential curve growth. The default values
provided are usually enough to provide the starting point for a good fit. This starting
point is used by PyOTE during a least-squares driven search for better time constant
values. If the starting point given is too far from 'correct', the least-squares search may
settle in a local minimum that produces a fit that is visually bad. In this case, change
the starting value to something closer to 'correct' and try again.

• When the exponential curve fit algorithm is in use, the light-curve plot PyOTE displays
will be changed. Gone is the blue 'camera response' curve, replaced by brown dotted
'theoretical' exponential edge curves that you can use to judge for yourself the
goodness of a 'fit'.

• You will probably want to use the most aggressive noise reduction in most cases, but
make sure that your expected event duration is long enough that the D transition
exponential curve has time to settle to the bottom event plus some time to allow a good
determination of the event bottom intensity. At DNR:HIGH, your expected event time
should be greater than 30 frames (1 second) to use this setting.

• I suggest the following rules-of-thumb: can use DNR:HIGH for events 2 seconds and
longer; can use DNR:MIDDLE for events 1 second and longer; can use DNR:LOW for
events 0.5 seconds and longer.

version 4.1.2

• fixes bug when D only search has been selected

version 4.1.1

• fixes bug where signal columns beyond four were being read as duplicates of column
5.

version 4.1.0

• adds error bars to reported magDrop values.

This was an interesting exercise in the propagation of errors because the magDrop
calculation involves ln(A/B) where we know the error bars for A and B but have to
propagate those errors through the ratio A/B to get its error bars and then through the
ln() function to get the final error bars. The equations I use were verified through
simulations.

version 4.0.9

• fixes issue where PyOTE could not read files that it had written.

version 4.0.8

• fixes bug (introduced by a misspelling in version 4.0.7) that kept csv files with more
than four apertures from runnig.

version 4.0.7

• adds the ability to select the PyMovie data column type to be analyzed. There are two
main column types that are likely to be used: signal, which has background subtracted
and appsum, which has no background subtracted – it's the raw mask pixels summed.

Some others are available: avgbkd (shows the average pixel value in the aperture);
stdbkg (shows the pixel noise in the background pixels in the aperture); nmaskpx
(which shows the nuber of pixels in the sampling mask – there are times when this
curve can be used to extrat event times).

Note: this only applies to csv files generated by PyMovie.

version 4.0.6

• minor GUI changes

version 4.0.5

• if you click outside the light-curve, the closest point will be toggled (so you don't have
to zoom in to select the leftmost or rightmost point in a light-curve.

• When baseline statistics are calculated, they are reported as baseline mean and
baseline snr (instead of just snr, which is the term we use when a drop is present).

version 4.0.4

• a few GUI changes

• removed the Use as secondary check box. Now if secondary curve is selected (spinner

is non-zero), it will be used automatically.

version 4.0.3

• implements a major GUI change: uses tabbed folders to group buttons and other
controls.

• Removes radio buttons that indicated a D and R solution wanted, or a D-only solution,
or an R-only solution. The type of solution is now inferred from D and R region setting.

When min/max event size is used as the search criteria, then a D and R solution is
assumed and found. This type of search criteria does not make sense for a D-only or
an R-only solution. Use a D region or R region selection for these cases

• The 'selected curve to analyze' number and the 'curve to normalize' number are now
allowed to be the same – no funny jumping around.

It is even possible to normalize a curve against itself. There may be a use case where
this is useful, so I didn't lock it out.

version 4.0.2

• removed a debug print statement that was inadvertently left in. It is responsible for the
“mouse event” messages polluting the log file.

version 4.0.1

• increased width of detectibility plots to (hopefully) deal with Windows tendency to
truncate the plots. If this doesn't work, then this will be a permanent feature (not a bug)
for Win10 installations.

version 4.0.0

• detectibility graphics plots are now being being put in their own folder. The root folder is
that of the directory where the light-curve came from. The plots will be found in
lightCurveDirectory\DetectibilityPlots\

In addition, if you supply a duration step size, which is the way to ask the detectibilty
calculator to step from the given duration down until an event of that duration fails the
False-positive test, only the final plot (where False-positive became non-zero) will be
plotted.

All of the above is just to cut down on clutter in the light-curve directory and to only plot
meaningful graphics generated during the minimum duration search.

version 3.9.9

• whew! 3.9.8 did solve the sizing issue. So it is safe to get back in the water so...

This version just improves the right-click context help for buttons in the new
Detectibility calculator.

version 3.9.8

• one more attempt to solve the gui sizing issue.

• 'sticky' settings are back but are now stored in pyote.ini instead of the
 obscure simple-ote.ini

version 3.9.7

• Something inexplicable has happened regarding gui size. Suddenly, the gui size is too
large for many people – but I have set the gui size smaller than it has ever been. So,
best guess is that an overly large gui size got distributed once (there was a strange
event where an extremely large gui size appeared) and is being 'remembered' in the
simple-ote-ini file that preserves the 'sticky' values like size and position of the gui and
a few other things.

This version refuses to read any existing .ini files. Hopefully you will be able to run the
program, but nothing will be 'sticky'.

If this 'cures' the problem, I can restore the use of the .ini file and we can get back the
sticky stuff.

This version also removes the 'scrunch' of the lefthand button panel.

version 3.9.6

• another attempt fix the startup gui size issue on smaller legacy monitors. This version
has a design size of 1900x1000. It may be necessary to delete the simple-ote.ini file
that 'remembers' size and position settings. It is located in whatever directory PyOTE
starts up in.

version 3.9.5

• adds automation to the 'detectibility' calculator. If a duration step size is entered, a
series of 'detectibility' calculations will be made at decreasing durations until the false-
positive probability becomes non-zero. A unique .png (incorporates duration and
magDrop in the file name) will be written to the directory of the light-curve and the final
plot where detection failed will be left on-screen.

If the duration step size is left unfilled or is zero, a single 'detectibility' calculation will be
made as before.

version 3.9.4

• attempts to fix over-size initial gui.

version 3.9.3

• makes various improvements to the 'detectability' calculator to make it easier to use.

version 3.9.2

• adds a 'detectability' calculator for use in pre-planning event observation.

• 'scrunched' the left panel buttons together to make more room for the user to move the
horizontal splitter up (which gives more room to view the lower right panel where the

report gets printed).

I think that this is kind of ugly, and it can be easily returned to the more spacious format
if users would prefer the old look over more view space for the report.

version 3.9.1

• adds an snr calculation to the Calc baseline stats button.

version 3.9.0

• restored the right-click help to the Mark baseline region | Clear baseline region |
Calc baseline mean/sigma/corr coeffs buttons that got lost during the scrollable gui
experiment.

version 3.8.9

• Changed the label on the Write csv file button to Save current light-curve to more
intuitively suggest what is hiding behind this button.

version 3.8.8

• fixed a bug that sometimes kept events that contained a single point at the bottom from
producing a report.

version 3.8.7

• changed the way curve to analyze and normalization curve are selected to make it less
confusing. Now, if there is a conflict (same curve selected for analysis and
normalization) the other one is set to 0 (a new value) to 'get it out of the way'. It may
still be a little bit confusing when you need to crossover, but if you set the higher
numbered curve first, it will be easy.

version 3.8.6

• checks for only a single light-curve in the csv file which was causing a 'list index out of
range' error message

version 3.8.5

• changed the way QGridLayout was referenced.

version 3.8.4

• changed the way QTableWidgetItem and QApplication were referenced to
accommodate the latest Anaconda version, which has reorganized where those
modules are stored. A similar change was made in version 3.7.6 and I do not know
how this has gone uncorrected for so long – I hope that I have not missed something.

version 3.8.3

• adds display of light-curve name (if available in the csv file) to the curve-to-be-analyzed
and the normalization curve next to their selection spinners.

version 3.8.2

• 3.7.5 introduced a scrollable GUI for small screens. Unfortunately, that caused resizing
problem for all users. The version reverts back to the original GUI design.

• Added a print to the command window of the version number for diagnostic purposes.
It will help clarify the situation when an installation has somehow managed to have
multiple locations for PyOTE storage as to exactly what version is running.

version 3.8.1

• adds a checkbox to use reading number to annotate the x-axis, even when timestamps
are available to use for this annotation. The setting is 'sticky', so your last preference
will be remembered and used in the next run.

version 3.8.0

• adds a tutorial button to supply a quick-start for new or infrequent users.

version 3.7.9

• adds a tool that allows a user to manually specify which baseline points to use for the
calculation of B (baseline mean) baseline noise (sigmaB) and noise correlation
coefficients. This was added primarily to support GPS-flash-tagged light-curves where
the flash itself adversely affects the baseline values. With this new tool, the regions of
the baseline that are outside the 'flash-zone' can be specified. Look for a button
labelled Mark baseline region located near the bottom-left of the GUI panel.

This tool may also be useful for wind-gust situations, headlights from passing cars,
bumping the telescope, etc. In the past, such accidents might have required extensive
'clipping' of the light-curve to avoid the affected areas, with a consequent loss of
information. Hopefully this tool will alleviate those situations.

version 3.7.8

• added visible left, top, and bottom axes to main plot (with ticks to make easier to
associate timestamp with point).

version 3.7.7

• if timestamps are available in the csv file, they are used as x axis labels in the main
plot.

version 3.7.6

• changed the way QMainWindow and Qapplication were referenced to accommodate
the latest Anaconda version, which has reorganized where those modules are stored.

This was causing a fatal startup error.

version 3.7.5

• changes the routine that looks for the latest version of PyOTE to one provided by Kia
Getrost. His version contacts the PyPI repository via a json query and is the officially
supported way to get version info. My version was based on a 'hack' that depended on
a special feature of pip (the loader that get programs from the PyPI repository) that was
marked as 'unsupported'. That worked for many years until the pip programmers
removed the 'special feature' as was their right (and the implicit promise/warning, I
guess). This caused several users to always get a message that they were not running
the most recent version of PyOTE, even though they were. Again: thanks to Kia

Getrost for researching the problem and even supplying correct code (worked first
time!) for me to use.

• The GUI has been changed so that scroll bars will appear when the standard GUI size
exceeds your screen dimensions. THIS IS EXPERIMENTAL BECAUSE I DO NOT
HAVE SUCH A SMALL SCREEN TO TEST WITH. If this does not work for you, please
let me know immediately!

version 3.7.4

• fixed issue with ‘save main plot’ that caused the graphic to sometimes be written
to a previous folder rather than the current folder containing the csv file (FYI: it
was a ‘feature’ of the routine that saved this information that, in the interest of
efficiency, it would sometimes not write a new folder name to the ‘sticky file’ until
later – the fix was to force it to update the ‘sticky file’ on every change)

version 3.7.3

• adds code line needed by any Mac users that are running Big Sur

version 3.7.2

• fixes bug that caused all analysis attempts to 'stall'

version 3.7.1

• fixed a bug in the r limb angle entry

version 3.7.0

• adds right-click help to ast speed label giving the equation to use if asteroid
speed is not available but asteroid diameter and maximum duration are
specified

• adds suggestion to right-click help on penumbral fit checkbox for how to find the
penumbral curve csv file that is provided for practice purposes.

version 3.6.8

• adds modeling of off centerline observations to lightcurve calibration curve
generation

version 3.6.7

• clarified the location of the Enable Manual Timestamp Entry checkbox in the
pop-up message appears when there are no timestamps in the csv file.

version 3.6.6

• modified the lightcurve demo to show more clearly the camera exposure
function and the star intensity function that are convolved with the diffraction
lightcurve to produce the lightcurve as seen by the camera.

The right-click help connected to the Demo button has been expanded to
include a discussion of the convolution operation and hopefully provide some
context to aid in understanding the star and camera function plots.

version 3.6.5

• added advisory message when False Positive probability plot appears in hopes
of stemming in-discriminant use of this number as a 'decider' between a 'miss'
and a 'positive' for an observation.

version 3.6.4

• version 3.6.2 would open .xlsx Report file on Mac, but not Windows. This
version attempts to fix that (Windows needs a different command to open a file).

version 3.6.2

• In Excel report:

… at end of filling, I call the OS to open the file. Requires correct association
of .xlsx file type with Excel or LibreOffice, or whatever you use to examine
spreadsheets

… now writing numbers into numeric cells rather than text. This allows the cell
formatting to control rounding, etc

… if I can't write to the selected file, I ask whether you might have it open
somewhere else already

version 3.6.1

• reduced number of digits in the error bar numbers to 2 written to the Asteroid
Occultation Report Form so that the resulting number fits within the allotted cell
size. (I'm told that Occult only uses 2 digits anyway.) I also updated the context
help associated with the … fill Excel report button

version 3.6.0

• provides the ability to fill entries in the Excel spreadsheet Asteroid Occultation
Report Form from PyOTE results, thus eliminating transcription errors.

A button to allow the user to activate this 'fill' has been added just to the right of

the … write report button

NOTE: the normal .xls report form that OccultWatcher creates and prefills (when
requested) during your report to OccultWatcher ...

… MUST BE CONVERTED to .xlsx for use by PyOTE!

… For Windows users, Excel will read an .xls file and save it as .xlsx
… For Mac/Linux users, LibreOffice will read an .xls file and save it as .xlsx

Sorry about this extra step, but it was necessary. The downstream tools used by area
coordinators work equally well with the .xls and .xlsx forms of the spreadsheet, so there is no
problem sending in the .xlsx version.

What gets filled in for you is:

...D/R uncorrected times
...D/R error bars
...SNR
…OTA used
...nominal magDrop (entered in Comments cell of the spreadsheet).

NOTE: you must still open the spreadsheet and enter the exposure setting used for your
camera; it was not possible to do this from PyOTE.

After filling in the exposure setting in the spreadsheet, double check the form but it is likely
that it is ready for submission.

version 3.5.9

• fixed another bug in penumbral curve fit and removed diagnostic printouts.

version 3.5.8

• fixed a number of bugs in the penumbral curve fit code

version 3.5.7

• automatically turns off the display of the normalizing lightcurve when a
normalization is performed. It was a source of confusion to leave the normalizing
lightcurve visible because it was sometimes the case that the normalization
appeared not to have occurred (when the normalization effect was
subtle/minor).

version 3.5.6

• fixed a bug that kept a user from selecting a new file to read if PyOTE had been
started from PyMovie. Previously, it had only reopened the same file instead of
giving the user a file select dialog to choose from.

version 3.5.5

• fixed a bug that kept occultations from being extracted from lightcurves 5 and
up. The lightcurves above 4 could be viewed --- they just couldn't be processed
through the event finder because they were a different type (coding error)

version 3.5.4

• made the 'get newest version' code identical to that in PyMovie in hopes that
that will resolve the issue that some people experience with pip (or python)
installing downloaded pyote in a directory where it subsequently cannot be
discovered. The change is minute, so I'm not optimistic, but it's worth a shot.

version 3.5.3

• removed the blank lines between header lines extracted from the csv file and
placed in the log file --- this makes it easier to look at the newly added aperture
settings (so just a tiny cosmetic change).

version 3.5.2

• Changed the 'smooth reference star procedure' to no longer display the points at
the left and right ends; such points are actually extrapolated points with all the
hazards that extrapolation can engender. Smoothing functions that use sliding
windows always have a problem at either the left edge, the right edge, or both
(when a symmetrical smoothing algorithm is employed). They run out of points
and have to extrapolate/fake a number of points equal to the window size. Such
extrapolated points can exhibit extreme behavior, zooming up or down
unexpectedly and unrealistically.

Previously PyOTE treated this as a cosmetic problem and relied on the observer
to be aware of the end point effects and ignore them. But that puts a burden on
the user to be well informed about what's going on. As one of the goals of
PyOTE is to enable infrequent/inexperienced users to get dependable results
without requiring in-depth understanding of the internal workings of the program,
we have decided to make the end-point smoothing issue very apparent by doing
an automatic 'trim' of the points affected by extrapolation.

version 3.5.1

• Added additional references to the North American Excel Spreadsheet report in
the new section of the final report that bangs on about the start-of-exposure
timing convention.

version 3.5.0

• When PyMovie files are read, the aperture names are now being used in the
data table (lower left panel) as column headings and used during the 'write csv'
process. This makes the format of the PyOTE csv file match the PyMovie
format so that AOTA can read both PyMovie csv files AND PyOTE csv files.

• NEW: when 'trims' have been placed, a 'write csv' process will honor those
values and produce a 'trimmed' output file.

• NEW: when a light curve has been 'normalized', the changed values are written
to the data table where, once again, a 'write csv' process will capture the results.

• Added additional reminders that the start-of-exposure timestamp/timing
convention is employed.

version 3.4.9

• Added some explanatory language to the “Excel report” section regarding the
proper interpretation of the 'false positive probability' number.

version 3.4.8

• This version deals more realistically with high magDrop lightcurves by defining a
'limiting magDrop' as:

 limMagDrop = 2.5 * log10(B / std(A))

 std(A) is the noise level of A.

 B = average baseline intensity
 A = average event intensity

Normally, we report/calculate magDrop = 2.5 * log10(B / A), but this calculation becomes
increasingly unreliable as the value for A gets very small. And when A is noisy, it is even
possible to statistically have A become negative for large mag drop lightcurves. This happens
more and more as A approaches and then becomes smaller than std(A). For example, if A
happened to be equal to std(A), the normal distribution of A values tells us that 84% of
possible A values are > 0 and so can be used in the regular magDrop equation. The other
16% of the time we can only report that the calculation could not be performed.

The above observation suggests that reliable estimates of magDrop require that A be greater
than std(A) --- that is the ad hoc reason that we have defined limMagDrop as we have.

This value is substituted for a calculated magDrop whenever A is less than std(A), i.e.,
whenever A is at or below std(A).

limMagDrop values are reported with a leading > symbol to signify that that value is a
limMagDrop value. They are easy to spot in the report.

version 3.4.7

• Automatically loads the correct version of Adv2

version 3.4.6

• Adds AAV Version 2 file as a type that can be read (important when Do OCR
check is enabled)

version 3.4.5

• Fixes block integration which was failing when more than 4 lightcurves were
being processed.

• Made use diff and Do OCR checkboxes sticky.

version 3.4.4

• PyMovie files can have lightcurves extracted from more than 4 apertures (with
user supplied names). This version allows all lightcurves from PyMovie files to
be read and made available for processing. Prior to this change, only the first 4
lightcurves were read.

Note: when you change the lightcurve to be analyzed (with the spinner), the log
panel will show the aperture name for that lightcurve. That happens when the
reference lightcurve is changed as well.

These changes are to PyMovie file treatment ONLY.

version 3.4.3

• Fixed bug that required an entry in dist(AU) and speed(km/sec) edit boxes for a
solution to be found (the empty entries were causing an uncaught exception).

The intention is that PyOTE should work as it always did if a user ignores the
new lightcurve parameter panel and makes no entries. This 'fix' was required to
make that happen.

version 3.4.2

• Cosmetic change again: added a spinner to control line widths in plots so that a
user can adjust for the resolution of the screen in use. I design on a 5120x2880
screen and needed lines to be 3 pixel wide to suit my taste. But some users
have screens with 1280 horizontal resolution and those same 3 pixels became
unsightly fat lines --- now there's a choice.

version 3.4.1

• Some cosmetic changes: thinner vertical thins for edge position and error bars;
checkboxes to control whether the underlying lightcurve is plotted, error bars are
plotted, or edges are plotted --- a cleaner plot is the major result and you have
better control over the 'look'

• Added a checkbox to disable the automatic display of D and R frames from the
video for OCR quality control checks. When there are no concerns about OCR
reliability (true for me nearly all the time), it can be annoying to have to close the
frames all the time.

• The BIG change is the addition of a penumbral curve fit procedure. It's a bit
fiddly, so I included a test lightcurve with the download. I can't give you a
specific location for the file because it depends on details of your particular
installation. Find where it is by searching for example-penumbral.csv When
you find it, copy or move it to some other folder because if you process it where
it resides, other files will get added in your installation directory --- we really don't
want extraneous non-program files floating around in your installation directory.

To learn how to use the new procedure (which is a bit 'fiddly'), right-click on the
penumbral fit checkbox --- be patient; play around.

version 3.4.0

• Adds the ability to specify a diffraction lightcurve for use in timing the event. A
new panel with edit boxes for asteroid/occulting body distance (in AU ---
astronomical units) and asteroid/shadow speed (in km per second) has been
added. These values are needed in order to calculate a diffraction light curve.

In addition to modeling diffraction effects, one can add the effect of a finite star
disk to produce a penumbral curve. NOTE: PyOTE does not yet have the ability

to correctly analyze a penumbral curve where it takes more than 1 or 2 readings
for the transition. That project is under way and will be in the next version.

version 3.3.9

• Automatically installs cv2 if not already present. This package is needed for the
new frame view feature.

version 3.3.8

• If the video referenced in the csv file can be found, there is now an automatic
display of the D and R frames relevant to calculating correct D and R times so
that the user can verify that timestamp OCR extracted the correct timestamp
values.

version 3.3.7

• A new button (View frame) with an associated spinner for entry of a frame
number has been added:

Use this button to view a frame from the video that was used by PyMovie or Limovie to
prepare the .csv file that is currently being analyzed. .avi and .ser files are viewable in
this manner as well as .fits files inside a FITS folder.

If this button is disabled, it is because the .csv file did not come from PyMovie or
Limovie or simply cannot be found/opened.

This feature can/should be used as a final quality control check for a video that
contains timestamps extracted using OCR. It is possible for OCR to fail in manner that
is not detected by PyOTE because the program only verifies that there is a consistent
step (delta time) between frames. If a high order digit in the timestamp has been
consistently misread, substituting a 8 for a 9 in the minutes field for example, the steps
can be consistent while the reported time of the event will be seriously in error.

ALL time reporting is derived from the timestamp(s) associated with D and/or R (the
integer values, not the sub-frame values). If those timestamps are correct, the reported
times will be correct even when there may be a few missing or duplicated frames. So
best practice is to enter the D frame value in the spin box and visually confirm that the
timestamp that you can see is the same as that extracted by the OCR procedure.
Repeat for R.

Another use for this feature is to handle the case where there is a visual timestamp, but
either OCR was not activated during the .csv preparation, or the timestamp overlay
came from an unsupported VTI type. The workflow would be to let PyOTE find the D
and R frame values, but before pressing ... write report, do a Manual timestamp
entry for the D and R frame entries found by viewing the relevant frames and entering
the correct times in the Manual timestamp dialog.

It should be noted that the manual timestamp entry can be performed even when
timestamps were already present in the file --- your manual entries will cause all the
timestamps to be recalculated.

version 3.3.5:

• Changed usage of max([a, b ,c]) to max(a, b, c) to see if this allows the Numba
JIT compiler to work for one user that found version 3.3.4 failed to load/compile.

This should have no effect on users that already have version 3.3.4 working.

version 3.3.4:

• To shorten the time to find 'solutions', I used the Numba JIT (just-in-time)
platform independent compiler that produces machine code from Python byte-
code. You may notice a very slight increase in the time to start-up PyOTE
because I do those compile operations while PyOTE is being loaded.

version 3.3.2:

• Adds a false-positive probability calculation and printout in the final report. This
number is the fraction of 'false drops' found during the 50,000 tests that are
greater than or equal to the drop value extracted from the actual observation.

version 3.3.1:

• Adds a 'false positive' detection to the final report. A new plot has been added
to the error bar plot. It shows the distribution of drop sizes (B-A) for an event of
the size (duration) extracted from the actual observation, but with only correlated
noise in the sample (the number of points in this sample is equal to the number
of points used in the lightcurve extraction). 50,000 attempts are made to find
the deepest event that appears (falsely) when there is only noise being
analyzed. If the drop from the actual observation is greater than the maximum
size of a 'false drop', we have some assurance that the event extracted from the
actual observation did not happen 'by chance'.

version 3.2.9

• Changed main plot so that the scroll wheel only zooms the x axis.

• Changed lightcurve plot so that it conforms properly to 'start-of-exposure'.

version 3.2.8

• Changed font size in help files --- it was fine for Mac but too big for Win10

version 3.2.7

• Removed the 'hover-for-help' and replaced it with a 'right-click-on-item' to get
help. This scheme was introduced in PyMovie and I found it easier to use than
the 'hover' scheme. In practice, the 'hover' popped up when it was not needed,
so most users eventually disabled it. As a result, it became so tedious to look at
help --- enable hover; hover; read; disable hover --- that the help system was
used less and less. The right-click-for-help is always available and easily
invoked --- hopefully this will encourage more frequent reference to it.

version 3.2.6

• This is a 'cosmetic' release --- there should be NO detectable differences from
version 3.2.5 in terms of functionality.

• All python files were brought into compliance with PEP 8 coding standards.
Only I care about that.

• More significantly, I removed the dependency on C code by using Numba as a
code accelerator instead of Cython. As a result, I no longer need to compile
separate code versions for Mac, Windows, and Linux. That makes my life
easier, but you should experience no operational changes.

• All this 'cosmetic' work is in preparation for working on PyOTE issues again.

version 3.2.5

• Added special test for Tangra files to detect the empty fields (which MUST be
fixed) that Tangra outputs whenever it has trouble extracted a value from an
aperture. It prints a message and stops all further processing, forcing the user
to attend to and deal with the missing values.

version 3.2.4

• Modified the test for newer version to accommodate the different strings
returned by pip 18.1 and pip 19.0+

• Added ability to invoke PyOTE from PyMovie with an externally supplied csv file
that is automatically opened.

version 3.2.3

• fixed a long overlooked bug in the loading of the data table (at lower left corner
of GUI): when there are four lightcurves, LC4 was set in the table from LC3 (i.e.,
LC3 == LC4 whenever there was an actual LC4. It was correct in the lightcurves
themselves, so no observation analyses have been affected by this bug. It was
cosmetic only.

• Added support for the PyMovie csv format

version 3.2.1

• this version makes PyOTE more robust to a common 'cockpit error' that users
have been making with Tangra files. Specifically, if a Tangra csv file is opened
in a spreadsheet program, then saved from that spreadsheet program, the
original csv file gets modified and overwritten by the addition of empty fields at
every row sufficient to match the number of columns in the longest
header/comment row --- the spreadsheet program did this to satisfy its internal
requirement that every row have an equal number of columns. The result is
superfluous commas at the end of data lines (that Tangra did NOT put there).
Until this version, that 'butchered' file could not be read. This version adds code
to parse data lines only up to the first non-empty column. Hopefully this will not
have ramifications in the future (like a format change that has empty fields
followed by non-empty fields --- not a likely expectation).

version 3.2.0

• Changed GUI to better align text on min max edit boxes to avoid confusion.

version 3.1.9

• Fixed a bug in the test for a min/max solution search being constrained by a too
large min value.

version 3.1.8

• version 3.1.7 was released without an updated version history. Here is what
was changed in 3.1.7:

• Added the ability to write the data table that is displayed in the lower left corner
of the GUI out as a csv file. Now, if timestamps and block integration operations
are performed on the input file, those results can be preserved in a csv file.

A 'file save' dialog is provided should you wish to change the default name and
location of the resulting file. The default name is that of the input file with the
text .PYOTE inserted to the left of the .csv extension. The default location is the
directory of the input file. It is recommended that you accept these defaults
unless you have compelling reasons to do otherwise.

version 3.1.6:

• Values entered in the Manual Timestamp Entry dialog box are now 'sticky', thus
making corrections easy to do without requiring re-entry of all data.

Also trapped is the case where a user has entered a custom frame time but failed to click the
radio button indicating that it is to be used.

version 3.1.5:

• Added additional tests of candidate solutions against a straight line so that there
should always be agreement between a solution found by a min/max event size
search and a marked D and R region search of the same area.

Previously it was possible for the min/max search, which searches the entire
light curve, to be tripped up by what we call a 'competitor'. A 'competitor' is an
'event' with good statistics. However, that 'competitor' may have a small
magDrop and so later be rejected when we compare with a straight line solution.
That 'competitor' would thus mask an event with slightly worse statistics but a
larger magDrop. The change was to test every candidate against a straight line
during the search. This does make the search time longer, but not too much
longer.

version 3.1.4:

• Fixed error in new dropped reading detection logic when light curve was
processed in field mode.

• Cleaned up some language in tooltips.

version 3.1.3:

• Expanded manual timestamp preset time deltas to include NTSC and PAL field
times. Also added ability to evaluate numeric expressions entered in the
'Custom time' box: now you can type 1.001/60.0 in that box if you wish.

• Eliminated the 'entry num' column in the data matrix at the lower left of the GUI.
The 'entry num' is unused and a possible source of confusion with the frame or

field number for the unwary.

• Added all the light curves read from the input file to the data matrix display.
Previously, only the first light curve values were displayed. This is done in
anticipation of adding a 'write csv' button to memorialize the result of a manual
timestamp entry.

version 3.1.2:

• Added a test for possible dropped frames identical to that done in R-OTE when
manual timestamp is utilized. The test is to calculate the expected number of
frames based on standard NTSC/PAL frame times and compare that number
with the count of frames enclosed by the early and late timestamps. If there is a
mismatch of more than 0.12 frames, a warning is popped up and a log entry
made. It is possible to use a 'custom' frame time if your camera differs from
either of those standards.

version 3.1.1:

• A convenient way to search for a 'solution' is to set a min and max event size
rather than mark D and R regions. This is particularly useful in low snr
situations where the D and R edges may be quite diffuse. However, if one sets
the min event too large or the max event too small, the resulting 'solution' will be
artificially constrained and thus be wrong. This situation is now detected and a
log entry as well as a pop-up alert will tell the user to change the limits and try
again.

• Three magDrop values are now calculated for each confidence level: the largest
magDrop calculated using B + err(B) along with A – err(A); the nominal
magDrop calculated using B and A; the minimum magDrop calculated using
B – err(b) along with A + err(A)

• The labels on the Find Event button and the Calc Err Bar button were changed
to more clearly suggest that after finding an 'event', one should then press the
'report' button to the right in order to complete the process.

version 3.1.0:

• Added a Mac version of a pyote startup file. It is automatically placed on the
Desktop the first time pyote is run. Double-clicking on that Desktop file icon will
start pyote thereafter.

version 3.0.8:

• Added a Windows batch file to the distribution that, when executed, will startup
pyote. The file is called PYOTE.bat and is automatically copied to
C:\Anaconda3 (if it is not already there) when pyote is first run. Now, to create a
clickable desktop icon for starting up pyote, a user need only go to the
C:\Anaconda3 directory, locate the PYOTE.bat file, create a shortcut to it, and
drag the shortcut to the desktop. Remember, that file does not appear until the
first run of pyote.

The ‘skipped’ version numbers were caused by the need for repeated testing of
this new feature, each test requiring a new version, even though functionality did
not change,

version 3.0.1:

• Restored the vertical splitter between the command/plot area and the
table/report area. Somewhere along the line this capability was accidentally
removed, and the lack of the splitter was not noticed. Now it’s back.

version 3.0.0:

• No code changes. This version is the same as 2.1.6 except that it is built on
python 3.7. The previous versions used python 3.6. This allows new users to
install the latest Anaconda3 version (which installs python 3.7) without fiddling
with archived Anaconda3 versions.

version 2.1.6:

• We now disable the Accept integration button on the first left click in the light
curve. As such a click removes the color bars that result from the automatic
block integration analysis, it seems intuitive to disable the Accept integration
button at that time as well.

version 2.1.5:

• Disable the Accept integration button when user overrides an automatic block
analysis with a manual block selection followed by a click on the Block integrate
button.

version 2.1.4:

• Corrected a bug that kept manual selection of block integration from being
performed after a refusal to accept the automatic block analysis results.

version 2.1.3:

• A minor change to how color bars are plotted when the automatic block
integration feature is employed. The edges now appear between data points so
the bands are easier to see, particularly for 2 point block sizes.

version 2.1.2:

• To ease usage of the automatic block integration feature, accepting the
automatically determined block integration parameters no longer uses a modal
query box, which interfered with the ability to explore/expand the light curve plot.
Now there is separate button which gets enabled after an automatic block
integration completes.

version 2.1.1

• Added progress bar tracking of block integration analysis because it can take an
extended amount of time to complete the analysis when the light curve has
many points.

version 2.1.0

• Added automatic determination of 'correct' block size and offset for block
integration when user clicks Block integrate button without selecting the two
points normally required to specify integration block beginning and end. The
user can choose to accept or reject pyote's opinion of the correct parameters to
use when the automation determination is invoked.

version 2.0.9

• Made the selection of Tooltip display 'sticky'

• Duration calculation when D and R span midnight now handled correctly

version 2.0.8

• toolTips changed to invoke and display in a custom dialog box that can be
moved and resized to better accommodate legacy displays

• Calc flash timing calculation fixed to properly deal with the non-integer frame
numbers that can result from field processed csv files

• Flash timing has been verified to work with integrated light curves

• Made block integration 'sticky' in that a 'Start over' no longer undoes a previous
block integration. As a result, once block integration has been performed after a
file read, it cannot be done again; a reread of the original file is now required.

version 2.0.7
This version provides several features to ease the processing of light curves that are
timed with LED flashes from iPhones (John Grismore's AstroFlashTimer) or Android
phones (Eric Couto's Occult Flash) rather than VTI timestamped files

• Adds a button to calculate the edge position of an LED timing flash.

• Adds a checkbox to enable/disable the tooltip messages that appear when a
control is hovered over. Tooltip display defaults to 'enabled' because tooltips are
an important aid for guiding users initially. Later, when such help is no longer
needed, the user can turn them off (they are annoying when you don't need
them).

• Adds the ability to select which light curve is to be analyzed. Previous versions
would only analyze the first light curve for D and R events. This flexibility is
useful in general, but was particularly needed to support LED flash timing.

• Adds a checkbox to force manual entry of timestamp info. This is useful when
OCR on a VTI timed light curve has catastrophic errors. It is always employed
when using LED flash timing.

• During the error bar calculation, it is possible for the Cholesky decomposition
needed for treating correlated noise to fail. Previous versions treated this as a
fatal error and would not produce a final report. This version instead treats the
noise as uncorrelated and continues processing to produce a final report.

version 2.0.6

• Added additional instruction in the popup that appears when no timestamps are
found in the csv file. This will give casual users additional guidance and
clarification for the manual timestamp entry process.

version 2.0.5

• files generated by pyote now contain PYOTE in the filename.

• Timestamps can be corrupted to the point that a timeDelta of 0.0 can result.
This version traps that event and reports it clearly --- 2.0.4 failed silently with a
divide by zero exception

version 2.0.4

• improves the handling of errors during the reading of Tangra files by showing
the offending line in the report panel. Tangra, if it has a tracking problem (i.e.,
loses it) will emit an empty field for that measurement, leaving it up to the user
to decide how to fill in the missing value. Prior pyote versions simply reported
'format error' without providing a printout of the offending line. This version fixes
that.

version 2.0.3

• detects and handles situations in which fewer than 14 baseline points are
available for calculation of correlated noise coefficients. When fewer than 14
points are available, the correlation coefficients are set to: [1, 0, …] (i.e.,
coefficients are set to 'no correlated noise')

version 2.0.2

• Note: this version has many significant changes. If you lose confidence in this
version, remember that you can always go back to version 1.47 by typing ---

 pip install pyote==1.47

in an Anaconda console. (Be sure to use double == signs in the command.)

• improved handling of D and R region selection so that one cannot enter an
invalid configuration --- automatic corrections/changes are applied.

• incorporates a new 'solver' that no longer requires an initial estimation of
baseline noise. This 'solver' is also much faster. With this 'solver', the two-pass
modification added in version 1.46 is no longer needed.

• removes unneeded 'analyze noise' buttons and rearranged other buttons to be
in-line rather than one above the other to allow the vertical splitter between the
plot area and report area more room to change (a help to those using screens
with relatively low pixel densities).

version 1.47

• adds bold red highlighting to message:
! There is something wrong with timestamps at D and/or R or frames have been dropped !

so that it is harder to miss.

version 1.46

• adds automatic recalculation of baseline and event noise parameters utilizing all
available data points during a second solution pass; this removes the variability
in calculated error bars due to user selection of a necessarily less complete set

of data points for noise analysis during the first solution pass.

• adds bold blue text in the 'Excel' portion of the final report to indicate whether or
not the light curve was block integrated, trimmed, or normalized. Failing to block
integrate a light curve that needed it is a common error. Highlighting the
presence or absence of block integration in the most looked at portion of the
final report will hopefully help reduce the number of such errors.

Version 1.45

• the initial fully functional release of pyote.

Introduction to pyote

Bob Anderson (bob.anderson.ok@gmail.com)

pyote is an occultation timing extraction utility program written primarily in python and
distributed through PyPI (the python package repository).

This program is specifically designed for those who will use such a program infrequently; it
has been designed to the best of my ability to produce consistent results in the hands of both
infrequent and frequent users --- the same results should be obtained no matter who
processed the data.

One important feature of the program intended to give confidence to the occasional user is
the production of a log file that documents all processing steps/decisions made in sufficient
detail that anyones result can be reviewed by more experienced users easily --- it is sufficient
to simply send such a reviewer just two things: the light curve and the log file.

1. pyote is designed for ease-of-use in the analysis of occultation light curves that can be
modeled reasonably well with a model based on geometrical optics. Such light curves
are common with star/asteroid occultations when the star is effectively a point source
and the asteroid transit speed is such that diffraction effects are masked by the natural
integration effect of the camera operation coupled with the frame rate of the video
recorder.

2. Correlated noise caused by atmospheric scintillation is frequently present in
occultation observations recorded at normal video rates of 25 or 30 frames per
second. pyote utilizes statistically rigorous calculations to properly characterize the
increased uncertainty in D/R time estimates due to such correlated noise. Additional
noise correlation is often present due to the relatively slow electronics present in low-
cost frame grabbers and in the camera electronics responsible for generating the
composite video output.

3. Physically realistic models (but based on geometrical optics) are fit to the light curves
with all decisions about details (complexity) of the model used made using the Akaike
Information Criterion (AIC). In particular, an AIC calculation is always used to justify or
reject sub-frame timing.

4. Maximum Likelihood Estimation is used throughout to determine 'best fit' of model light
curves to the actual data.

The gui for pyote is designed to lead the user through the necessary steps by enabling the
buttons in sequence as each task is performed. So, initially, only two principal buttons are
enabled: the 'info' button that brought up this document and the 'Read light curve' button.
After reading this document, open a light curve, and follow the enabled buttons.

All of the major buttons have hover text associated. To learn (or refresh) how to use the
program to analyze a light curve, spending a little time 'hovering' on the buttons will pay
dividends.

mailto:bob.anderson.ok@gmail.com

pyote will never change the input light curve, so experimentation is encouraged. There is a
'Start Over' button at the bottom that I encourage you to use freely.

Every step you make in the analysis is recorded in a log file. This is done because
experience has shown that some light curves are touchy to analyze and it is useful to ask
someone more experienced in running the program to look over your work. With the original
light curve and a copy of the log file, your work can be exactly duplicated by someone else.
And that log file is never deleted once it is opened for a particular light curve; it is simply
appended to, so a record of each 'experiment' is thus always available.

Every time pyote is started, it connects to PyPI (assuming you have an internet connection)
and checks to see if a more recent version of pyote has been added to the repository. If your

version is completely up-to-date, you will see this

in the log file panel in the lower right-hand corner of the gui. Otherwise, this will appear:
Normally, you will want to click 'yes'. That will cause your current version of pyote to install
(but not run) the newest version. Of course, to execute that new version, you will need to do
a close and reopen.

As convenient as this is, there is always a small risk that a new version will actually 'break'
something and that the 'cure' may take some time to be posted. But it is always possible to
return to a specific previous version of pyote. The procedure to do this is explained below.

Open an Anaconda Prompt window if you are running Windows.

For a Mac installation, open a command window and type source activate.

Then, type the following line in that command window:

1. pip install pyote==1.42

This command will uninstall the current (flawed) version of pyote and installs a specific
version, in this case, version 1.42. Note the double == followed by the specific version
number to be installed. (You can always determine a version of pyote that was working
for you by opening a recent log file --- the pyote version that produced that log file is
recorded there.)

